首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2804篇
  免费   165篇
  国内免费   242篇
  2023年   26篇
  2022年   28篇
  2021年   36篇
  2020年   55篇
  2019年   65篇
  2018年   69篇
  2017年   49篇
  2016年   71篇
  2015年   73篇
  2014年   76篇
  2013年   153篇
  2012年   71篇
  2011年   111篇
  2010年   64篇
  2009年   108篇
  2008年   108篇
  2007年   132篇
  2006年   133篇
  2005年   137篇
  2004年   107篇
  2003年   120篇
  2002年   106篇
  2001年   78篇
  2000年   99篇
  1999年   71篇
  1998年   77篇
  1997年   67篇
  1996年   71篇
  1995年   66篇
  1994年   73篇
  1993年   80篇
  1992年   66篇
  1991年   51篇
  1990年   73篇
  1989年   56篇
  1988年   54篇
  1987年   49篇
  1986年   39篇
  1985年   36篇
  1984年   49篇
  1983年   25篇
  1982年   29篇
  1981年   26篇
  1980年   21篇
  1979年   6篇
  1978年   14篇
  1977年   9篇
  1976年   11篇
  1975年   6篇
  1973年   4篇
排序方式: 共有3211条查询结果,搜索用时 15 毫秒
1.
2.
We have analyzed the nonbonded interactions of the structurally similar moieties, adenine and guanine forming complexes with proteins. The results comprise (a) the amino acid–ligand atom preferences, (b) solvent accessibility of ligand atoms before and after complex formation with proteins, and (c) preferred amino acid residue atoms involved in the interactions. We have observed that the amino acid preferences involved in the hydrogen bonding interactions vary for adenine and guanine. The structural variation between the purine atoms is clearly reflected by their burial tendency in the solvent environment. Correlation of the mean amino acid preference values show the variation that exists between adenine and guanine preferences of all the amino acid residues. All our observations provide evidence for the discriminating nature of the proteins in recognizing adenine and guanine.  相似文献   
3.
Saturation and Utilization of Nitrate Pools in Pea and Sugar Beet Leaves   总被引:1,自引:0,他引:1  
The critical periods in the saturation of pea and sugar beet leaves with nitrate absorbed by roots were discriminated. In peas, during the first 14 h, all nitrate penetrating leaf cells was concentrated in the cytosol (metabolic pool). During the second period (14–62 h), nitrate began to flow into the vacuole (storage pool), and the filling of the metabolic pool continued. Metabolic pool was saturated by the end of this period (62 h). During the third period (62–110 h), further nitrate accumulation in the cell occurred because of expanding of the storage pool. Its saturation (similarly as total cell saturation) commenced 86 h after the start of nitrate uptake. In sugar beet leaves, both metabolic and storage nitrate pools were saturated by the end of the first period (14 h), and the sizes of these pools did not change during the second period (14–86 h). When pea plants were transferred to the nitrate-free medium, nitrate efflux began from the storage pool until its complete exhausting after 3 days. In sugar beet leaves, nitrate was still present in the storage pool 4 days after plant transfer to the nitrate-free medium. In both crops, nitrate export from the storage pool was aimed at the maintenance of the optimum nitrate concentration in the metabolic pool and, thus, at the maintenance of nitrate reductase activity. A functional diversity of nitrate compartmentation in the cells of various plant species is discussed.  相似文献   
4.
5.
6.
7.
  • Orchids are distributed around the world, however, the factors shaping their specific distribution and habitat preferences are largely unknown. Moreover, many orchids are at risk of becoming threatened as landscapes change, sometimes declining without apparent reason. One important factor affecting plant distribution is nutrient levels in the environment. Nitrates can inhibit not only orchid growth and persistence, but also seed germination.
  • We used in vitro axenic cultures to exactly determine the germination sensitivity of seven orchid species to nitrates and correlated this with soil properties of the natural sites and with the species’ habitat preferences.
  • We found high variation in response to nitrate between species. Orchids from oligotrophic habitats were highly sensitive, while orchids from more eutrophic habitats were almost insensitive. Sensitivity to nitrate was also associated with soil parameters that indicated a higher nitrification rate.
  • Our results indicate that nitrate can affect orchid distribution via direct inhibition of seed germination. Nitrate levels in soils are increasing rapidly due to intensification of agricultural processes and concurrent soil pollution, and we propose this increase could cause a decline in some orchid species.
  相似文献   
8.
Two glutamic acid-rich fusion peptide analogs of influenza hemagglutinin were synthesized to study the organization of the charged peptides in the membranous media. Fluorescence and gel electrophoresis experiments suggested a loose association between the monomers in the vesicles. A model was built which showed that a positional difference of 3, 7 and 4, 8 results in the exposure of Glu3 and Glu7 side chains to the apolar lipidic core. Supportive results include: first, pKa values of two pH units higher than reference value in aqueous medium for Glu3 and Glu7 CγH, whereas the deviation of pKa from the reference value for Glu4 and Glu8 CγH is substantially smaller; second, Hill coefficients of titration shift of these protons indicate anti-cooperativity for Glu3 and Glu7 side chain protons but less so for Glu4 and Glu8, implying a strong electrostatic interaction between Glu3 and Glu7 possibly resulting from their localization in an apolar environment; third, positive and larger titration shift for NH of Glu3 is observed compared to that of Glu4, suggesting stronger hydrogen bond between the NH and the carboxylic group of Glu3 than that of Glu4, consistent with higher degree of exposure to hydrophobic medium for the side chain of Glu3.  相似文献   
9.
The effect of NO2 fumigation on root N uptake and metabolism was investigated in 3-month-old spruce (Picea abics L. Karst) seedlings. In a first experiment, the contribution of NO2 to the plant N budget was measured during a 48 h fumigation with 100mm3m?3 NO2. Plants were pre-treated with various nutrient solutions containing NO2 and NH4+, NO3? only or no nitrogen source for 1 week prior to the beginning of fumigation. Absence of NH4+ in the solution for 6d led to an increased capacity for NO3? uptake, whereas the absence of both ions caused a decrease in the plant N concentration, with no change in NO3? uptake. In fumigated plants, NO2 uptake accounted for 20–40% of NO3? uptake. Root NO3? uptake in plants supplied with NH4+plus NO3? solutions was decreased by NO2 fumigation, whereas it was not significantly altered in the other treatments. In a second experiment, spruce seedlings were grown on a solution containing both NO2 and NH4+ and were fumigated or not with 100mm3m?3 NO2 for 7 weeks. Fumigated plants accumulated less dry matter, especially in the roots. Fluxes of the two N species were estimated from their accumulations in shoots and roots, xylem exudate analysis and 15N labelling. Root NH4+ uptake was approximately three times higher than NO3? uptake. Nitrogen dioxide uptake represented 10–15% of the total N budget of the plants. In control plants, N assimilation occurred mainly in the roots and organic nitrogen was the main form of N transported to the shoot. Phloem transport of organic nitrogen accounted for 17% of its xylem transport. In fumigated plants, neither NO3? nor NH4+ accumulated in the shoot, showing that all the absorbed NO2 was assimilated. Root NO3? reduction was reduced whereas organic nitrogen transport in the phloem increased by a factor of 3 in NO2-fimugated as compared with control plants. The significance of the results for the regulation of whole-plant N utilization is discussed.  相似文献   
10.
We assessed the extent to which plants can acquire amino acids when supplied as single N-sources or when plants have access to a mixture of amino- and inorganic N sources. Because the uptake of different N-sources is temperature-dependent, the effects of temperature on amino-N uptake were also tested. Lolium perenne (perennial rye-grass) was grown hydroponically at 11 °C or 21 °C. Uptake of N was determined using 15N tracers at the growth temperature from solutions containing either nitrate, ammonium or glycine as single N sources and from a mixture containing all three N-forms. Estimates of the relative importance of amino acids such as glycine to the total N budget of plants will have been underestimated in studies where uptake was determined in single source solutions compared with those from solutions containing a mixture of N-forms. The proportion of total N acquired from the mixed N source as ammonium increased as temperature was reduced. Regarding the uptake and initial metabolism of glycine, uptake was probably the rate limiting step at 11 °C whilst it was the metabolism of glycine to serine at 21 °C. Although 15N incorporation into the plant amino-N pool was generally in proportion to the abundance of individual amino acids, its incorporation into the glycine pool was sometimes significantly less than predicted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号